Aspire Faculty ID #14458 · Topic: JEE Main 2024 (8 April Morning Shift) · Just now
JEE Main 2024 (8 April Morning Shift)

Let the sum of two positive integers be $24$. If the probability that their product is not less than $\dfrac{3}{4}$ times their greatest possible product is $\dfrac{m}{n}$, where $\gcd(m,n)=1$, then $n-m$ equals

Previous 10 Questions — JEE Main 2024 (8 April Morning Shift)

Nearest first

Next 10 Questions — JEE Main 2024 (8 April Morning Shift)

Ascending by ID
1
For the function $f(x)=\cos x - x + 1,; x\in\mathbb{R}$, consider the statements (S1) $f(x)=0$ for only one value of $x…
Topic: JEE Main 2024 (8 April Morning Shift)
2
Let $P(x,y,z)$ be a point in the first octant whose projection on the $xy$–plane is $Q$. Let $OP=\gamma$; the angle bet…
Topic: JEE Main 2024 (8 April Morning Shift)
3
Let $z$ be a complex number such that $\lvert z+2\rvert=1$ and $\operatorname{Im}!\left(\dfrac{z+1}{z+2}\right)=\dfrac{…
Topic: JEE Main 2024 (8 April Morning Shift)
4
The sum of all the solutions of the equation $(8)^{2x}-16\cdot(8)^x+48=0$ is:
Topic: JEE Main 2024 (8 April Morning Shift)
5
The equations of two sides $AB$ and $AC$ of a triangle $ABC$ are $4x+y=14$ and $3x-2y=5$, respectively. The point $\lef…
Topic: JEE Main 2024 (8 April Morning Shift)
6
If $\sin x=-\frac{3}{5}$, where $\pi< x
Topic: JEE Main 2024 (8 April Morning Shift)
7
Let $[t]$ be the greatest integer less than or equal to $t$. Let $A$ be the set of all prime factors of 2310 and $f: A …
Topic: JEE Main 2024 (8 April Morning Shift)
8
If the set $R=\{(a, b): a+5 b=42, a, b \in \mathbb{N}\}$ has $m$ elements and $\sum_\limits{n=1}^m\left(1-i^{n !}\right…
Topic: JEE Main 2024 (8 April Morning Shift)
9
$L_1:;\vec r=(2+\lambda),\hat i+(1-3\lambda),\hat j+(3+4\lambda),\hat k,;\lambda\in\mathbb R$ $L_2:;\vec r=2(1+\mu),\ha…
Topic: JEE Main 2024 (8 April Morning Shift)
10
Let $I(x)=\displaystyle\int \frac{6}{\sin^{2}x,(1-\cot x)^{2}},dx$. If $I(0)=3$, then $I!\left(\tfrac{\pi}{12}\right)$ …
Topic: JEE Main 2024 (8 April Morning Shift)
Ask Your Question or Put Your Review.

loading...