Aspire Faculty ID #14522 · Topic: JEE Main 2024 (9 April Evening Shift) · Just now
JEE Main 2024 (9 April Evening Shift)

Let $B=\left[\begin{array}{ll}1 & 3 \\ 1 & 5\end{array}\right]$ and $A$ be a $2 \times 2$ matrix such that $A B^{-1}=A^{-1}$. If $B C B^{-1}=A$ and $C^4+\alpha C^2+\beta I=O$, then $2 \beta-\alpha$ is equal to

Previous 10 Questions — JEE Main 2024 (9 April Evening Shift)

Nearest first
1
If the variance of the frequency distributionis $160$, then the value of $c\in\mathbb{N}$ is:
Topic: JEE Main 2024 (9 April Evening Shift)
2
Between the following two statements: Statement I: Let $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 2\hat{…
Topic: JEE Main 2024 (9 April Evening Shift)
3
The value of the integral $\displaystyle \int_{-1}^{2} \log_e \big(x + \sqrt{x^2 + 1}\big),dx$ is
Topic: JEE Main 2024 (9 April Evening Shift)
4
$\lim _\limits{x \rightarrow \frac{\pi}{2}}\left(\frac{\int_{x^3}^{(\pi / 2)^3}\left(\sin \left(2 t^{1 / 3}\right)+\cos…
Topic: JEE Main 2024 (9 April Evening Shift)
5
If an unbiased dice is rolled thrice, then the probability of getting a greater number in the $i^{\text{th}}$ roll than…
Topic: JEE Main 2024 (9 April Evening Shift)
6
If $\log_{e} y = 3\sin^{-1}x$, then $,(1-x^{2})y''-xy',$ at $x=\dfrac{1}{2}$ is equal to:
Topic: JEE Main 2024 (9 April Evening Shift)
7
Let $\alpha,\beta;\ \alpha>\beta,$ be the roots of the equation $x^{2}-\sqrt{2},x-\sqrt{3}=0$. Let $P_{n}=\alpha^{n}-\b…
Topic: JEE Main 2024 (9 April Evening Shift)
8
The integral $\displaystyle \int_{1/4}^{3/4} \cos\left( 2\cot^{-1}\sqrt{\frac{1-x}{1+x}} \right),dx$ is equal to:
Topic: JEE Main 2024 (9 April Evening Shift)
9
Two vertices of a triangle $ABC$ are $A(3,-1)$ and $B(-2,3)$, and its orthocentre is $P(1,1)$. If the coordinates of $C…
Topic: JEE Main 2024 (9 April Evening Shift)
10
Let $\displaystyle \int_{0}^{x}\sqrt{1-\big(y'(t)\big)^{2}},dt=\int_{0}^{x}y(t),dt,\ 0\le x\le 3,\ y\ge0,\ y(0)=0$. The…
Topic: JEE Main 2024 (9 April Evening Shift)

Next 10 Questions — JEE Main 2024 (9 April Evening Shift)

Ascending by ID
Ask Your Question or Put Your Review.

loading...