Aspire Faculty ID #14611 · Topic: JEE Main 2025 (23 January Evening Shift) · Just now
JEE Main 2025 (23 January Evening Shift)

Let $\mathrm{A}=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x+y| \geqslant 3\}$ and $\mathrm{B}=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x|+|y| \leq 3\}$. If $\mathrm{C}=\{(x, y) \in \mathrm{A} \cap \mathrm{B}: x=0$ or $y=0\}$, then $\sum_{(x, y) \in \mathrm{C}}|x+y|$ is :

Previous 10 Questions — JEE Main 2025 (23 January Evening Shift)

Nearest first
1
Let $A=\left[a_{i j}\right]$ be a $3 \times 3$ matrix such that $A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\…
Topic: JEE Main 2025 (23 January Evening Shift)
2
$\displaystyle \lim_{x\to\infty}\frac{(2x^{2}-3x+5),(3x-1)^{x/2}}{(3x^{2}+5x+4),\sqrt{(3x+2)^{x}}}$ is equal to:
Topic: JEE Main 2025 (23 January Evening Shift)
3
The distance of the line $\displaystyle \frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{4}$ from the point $(1,4,0)$ along the l…
Topic: JEE Main 2025 (23 January Evening Shift)
4
The system of equations $\begin{cases} x+y+z=6,\\ x+2y+5z=9,\\ x+5y+\lambda z=\mu \end{cases}$ has no solution if:
Topic: JEE Main 2025 (23 January Evening Shift)
5
Let the range of the function $f(x)=6+16\cos x\cdot \cos\!\left(\frac{\pi}{3}-x\right)\cdot \cos\!\left(\frac{\pi}{3}+…
Topic: JEE Main 2025 (23 January Evening Shift)
6
If the area of the region $\left\{(x, y):-1 \leq x \leq 1,0 \leq y \leq \mathrm{a}+\mathrm{e}^{|x|}-\mathrm{e}^{-x}, \m…
Topic: JEE Main 2025 (23 January Evening Shift)
7
Let X = ℝ × ℝ. Define a relation R on X by (a₁,b₁) R (a₂,b₂) ⇔ b₁ = b₂. Statement I: R is an equivalence relation. St…
Topic: JEE Main 2025 (23 January Evening Shift)
8
If the square of the shortest distance between the lines $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z+3}{-3}$ and $\frac{x+1}{2…
Topic: JEE Main 2025 (23 January Evening Shift)
9
Let the point $A$ divide the line segment joining the points $P(-1,-1,2)$ and $Q(5,5,10)$ internally in the ratio $r:1\…
Topic: JEE Main 2025 (23 January Evening Shift)
10
The length of the chord of the ellipse $\dfrac{x^{2}}{4}+\dfrac{y^{2}}{2}=1$ whose midpoint is $\left(1,\dfrac{1}{2}\ri…
Topic: JEE Main 2025 (23 January Evening Shift)

Next 10 Questions — JEE Main 2025 (23 January Evening Shift)

Ascending by ID
Ask Your Question or Put Your Review.

loading...