Aspire Faculty ID #15771 · Topic: JEE Main 2019 (9 April Morning Shift) · Just now
JEE Main 2019 (9 April Morning Shift)

If $f(x)$ is a non-zero polynomial of degree $4$, having local extreme points at $x=-1,0,1$, then the set $S={x\in\mathbb{R}: f(x)=f(0)}$ contains exactly:

Previous 10 Questions — JEE Main 2019 (9 April Morning Shift)

Nearest first

Next 10 Questions — JEE Main 2019 (9 April Morning Shift)

Ascending by ID
1
The value of $\displaystyle \int_{0}^{\pi/2}\frac{\sin^{3}x}{\sin x+\cos x},dx$ is:
Topic: JEE Main 2019 (9 April Morning Shift)
2
Let $\vec{\alpha}=3\hat{i}+\hat{j}$ and $\vec{\beta}=2\hat{i}-\hat{j}+3\hat{k}$. If $\vec{\beta}=\vec{\beta}{1}-\vec{\b…
Topic: JEE Main 2019 (9 April Morning Shift)
3
All the points in the set $S = \left\{ {{{\alpha + i} \over {\alpha - i}}:\alpha \in R} \right\}(i = \sqrt { - 1} )$…
Topic: JEE Main 2019 (9 April Morning Shift)
4
If $\begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix} \begin{bmatrix}1 & 2 \\ 0 & 1\end{bmatrix} \begin{bmatrix}1 & 3 \\ 0 & …
Topic: JEE Main 2019 (9 April Morning Shift)
5
If one end of a focal chord of the parabola $y^{2}=16x$ is at $(1,4)$, then the length of this focal chord is:
Topic: JEE Main 2019 (9 April Morning Shift)
6
The value of $\cos^2 10^\circ - \cos 10^\circ \cos 50^\circ + \cos^2 50^\circ$ is
Topic: JEE Main 2019 (9 April Morning Shift)
7
If the function $f$ defined on $\left(\dfrac{\pi}{6}, \dfrac{\pi}{3}\right)$ by $f(x) = \begin{cases} \dfrac{\sqrt{2}\c…
Topic: JEE Main 2019 (9 April Morning Shift)
8
If the function $f : \mathbb{R} - {1, -1} \to A$ defined by $f(x) = \dfrac{x^2}{1 - x^2}$ is surjective, then $A$ is eq…
Topic: JEE Main 2019 (9 April Morning Shift)
9
Let $\displaystyle \sum_{k=1}^{10} f(a+k) = 16(2^{10} - 1)$ where the function $f$ satisfies $f(x+y) = f(x)f(y)$ for al…
Topic: JEE Main 2019 (9 April Morning Shift)
10
Let $\alpha $ and $\beta $ be the roots of the equation x2 + x + 1 = 0. Then for y $ \ne $ 0 in R, $\left| {\matrix{ …
Topic: JEE Main 2019 (9 April Morning Shift)
Ask Your Question or Put Your Review.

loading...