Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET
Aspire Study - Best NIMCET Coaching

🎯 Crack NIMCET with Aspire Study

🔹 India's Most Trusted MCA Coaching
💻 Live + Recorded Classes | 👨‍🏫 Expert Faculty
📝 All India Test Series | 🎯 Personal Mentorship

🥈 NIMCET AIR 2: Ayush Garg

🚀 Join Aspire Now

📂 Aspire Study Library


Question Id : 14219 | Context : JEE Main 2024 (30 January Evening Shift)
Let $R=\left(\begin{array}{ccc}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right)$ be a non-zero $3 \times 3$ matrix, where $x \sin \theta=y \sin \left(\theta+\frac{2 \pi}{3}\right)=z \sin \left(\theta+\frac{4 \pi}{3}\right) \neq 0, \theta \in(0,2 \pi)$. For a square matrix $M$, let trace $(M)$ denote the sum of all the diagonal entries of $M$. Then, among the statements:

(I) Trace $(R)=0$

(II) If trace $(\operatorname{adj}(\operatorname{adj}(R))=0$, then $R$ has exactly one non-zero entry.


Aspire Study Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

📲
Ask Your Question or Put Your Review.

loading...