Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations - NIMCET
Aspire Study - Best NIMCET Coaching

🎯 Crack NIMCET with Aspire Study

🔹 India's Most Trusted MCA Coaching
💻 Live + Recorded Classes | 👨‍🏫 Expert Faculty
📝 All India Test Series | 🎯 Personal Mentorship

🥈 NIMCET AIR 2: Ayush Garg

🚀 Join Aspire Now

📂 Aspire Study Library


Question Id : 14699 | Context : JEE Main 2025 (28 January Evening Shift)
Let $\mathrm{A}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -2 \\ 0 & 1\end{array}\right]$ and $\mathrm{P}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right], \theta>0$. If $\mathrm{B}=\mathrm{PAP}{ }^{\top}, \mathrm{C}=\mathrm{P}^{\top} \mathrm{B}^{10} \mathrm{P}$ and the sum of the diagonal elements of $C$ is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $m+n$ is :


Aspire Study Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

📲
Ask Your Question or Put Your Review.

loading...