JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 11 of 17

JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 11 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

The value of $\displaystyle \int_{0}^{\pi/2}\frac{\sin^{3}x}{\sin x+\cos x},dx$ is:

1
2
3
4

logo

$ \text{The integral } 16 \int_{1}^{2} \frac{dx}{x^{3}(x^{2}+2)^{2}} \text{ is equal to:}$

1
2
3
4

logo

The integral $\int {{{(2x - 1)\cos \sqrt {{{(2x - 1)}^2} + 5} } \over {\sqrt {4{x^2} - 4x + 6} }}} dx$ is equal to (where c is a constant of integration)

1
2
3
4

logo

If $\displaystyle \int_{1}^{2} \frac{dx}{(x^{2} - 2x + 4)^{\tfrac{3}{2}}} = \frac{k}{k+5}$, then $k$ is equal to:

1
2
3
4

logo

Let f : R $\to$ R be a differentiable function such that $f\left( {{\pi \over 4}} \right) = \sqrt 2 ,\,f\left( {{\pi \over 2}} \right) = 0$ and $f'\left( {{\pi \over 2}} \right) = 1$ and let $g(x) = \int_x^{\pi /4} {(f'(t)\sec t + \tan t\sec t\,f(t))\,dt} $ for $x \in \left[ {{\pi \over 4},{\pi \over 2}} \right)$. Then $\mathop {\lim }\limits_{x \to {{\left( {{\pi \over 2}} \right)}^ - }} g(x)$ is equal to :

1
2
3
4

logo

Let f : R $\to$ R be a continuous function satisfying f(x) + f(x + k) = n, for all x $\in$ R where k > 0 and n is a positive integer. If ${I_1} = \int\limits_0^{4nk} {f(x)dx} $ and ${I_2} = \int\limits_{ - k}^{3k} {f(x)dx} $, then :

1
2
3
4

logo

Let f be a non-negative function in [0, 1] and twice differentiable in (0, 1). If $\int_0^x {\sqrt {1 - {{(f'(t))}^2}} dt = \int_0^x {f(t)dt} } $, $0 \le x \le 1$ and f(0) = 0, then $\mathop {\lim }\limits_{x \to 0} {1 \over {{x^2}}}\int_0^x {f(t)dt} $ :

1
2
3
4

logo

Let $f(x)=x+\dfrac{a}{\pi^{2}-4}\sin x+\dfrac{b}{\pi^{2}-4}\cos x,\ x\in\mathbb{R}$ be a function which satisfies $\displaystyle f(x)=x+\int_{0}^{\pi/2}\sin(x+y)\,f(y)\,dy.$ Then $(a+b)$ is equal to:

1
2
3
4

logo

The value of the integral $\displaystyle \int_{0}^{1} x\cot^{-1}\left(1 - x^{2} + x^{4}\right),dx$ is:

1
2
3
4

logo

The value of $\dfrac{e^{-\pi/4}+\displaystyle\int_{0}^{\pi/4} e^{-x}\tan^{50}x\,dx}{\displaystyle\int_{0}^{\pi/4} e^{-x}\big(\tan^{49}x+\tan^{51}x\big)\,dx}$ is:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...