JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 13 of 17

JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 13 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let $f:\mathbb{R}\to(0,\infty)$ be a strictly increasing function such that $\displaystyle \lim_{x\to\infty}\frac{f(7x)}{f(x)}=1$. Then the value of $\displaystyle \lim_{x\to\infty}\Big[\frac{f(5x)}{f(x)}-1\Big]$ is:

1
2
3
4

logo

$\int_0^5 {\cos \left( {\pi \left( {x - \left[ {{x \over 2}} \right]} \right)} \right)dx} $,

where [t] denotes greatest integer less than or equal to t, is equal to:


1
2
3
4

logo

The value of the integral \(\displaystyle \int_{1}^{2} \left(\frac{t^{4}+1}{t^{6}+1}\right) dt\) is:

1
2
3
4

logo

Let $(a, b)$ be the point of intersection of the curve $x^2 = 2y$ and the straight line $y - 2x - 6 = 0$ in the second quadrant. Then the integral $I = \int_a^b \dfrac{9x^2}{1 + 5x^4},dx$ is equal to:

1
2
3
4

logo

The value of the integral \(\displaystyle \int_{1/2}^{2} \frac{\tan^{-1}x}{x}\,dx\) is equal to:

1
2
3
4

logo

If [x] is the greatest integer $\le$ x, then ${\pi ^2}\int\limits_0^2 {\left( {\sin {{\pi x} \over 2}} \right)(x - [x]} {)^{[x]}}dx$ is equal to :

1
2
3
4

logo

$\displaystyle 4 \int_0^1 \left(\dfrac{1}{\sqrt{3 + x^2} + \sqrt{1 + x^2}}\right) dx - 3 \log_e(\sqrt{3})$ is equal to:

1
2
3
4

logo

If $\int\limits_0^2 {\left( {\sqrt {2x} - \sqrt {2x - {x^2}} } \right)dx = \int\limits_0^1 {\left( {1 - \sqrt {1 - {y^2}} - {{{y^2}} \over 2}} \right)dy + \int\limits_1^2 {\left( {2 - {{{y^2}} \over 2}} \right)dy + I} } } $, then I equals

1
2
3
4

logo

Let $f\left( x \right) = \int {{{\sqrt x } \over {{{\left( {1 + x} \right)}^2}}}dx\left( {x \ge 0} \right)} $. Then f(3) – f(1) is eqaul to :

1
2
3
4

logo

$ \text{If [t] denotes the greatest integer } \le t, \text{ then the value of } \frac{3(e-1)}{e} \int_{1}^{2} x^2 e^{\lfloor x \rfloor + \lfloor x^3 \rfloor} dx \text{ is:} $

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...