JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 14 of 17

JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 14 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let $f(x) = \left| {x - 2} \right|$ and g(x) = f(f(x)), $x \in \left[ {0,4} \right]$. Then
$\int\limits_0^3 {\left( {g(x) - f(x)} \right)} dx$ is equal to:

1
2
3
4

logo

The value of the integral $\int\limits_0^{\pi / 4} \frac{x \mathrm{~d} x}{\sin ^4(2 x)+\cos ^4(2 x)}$

1
2
3
4

logo

For x2 $ \ne $ n$\pi $ + 1, n $ \in $ N (the set of natural numbers), the integral

$\int {x\sqrt {{{2\sin ({x^2} - 1) - \sin 2({x^2} - 1)} \over {2\sin ({x^2} - 1) + \sin 2({x^2} - 1)}}} dx} $ is equal to : (where c is a constant of integration)

1
2
3
4

logo

If [x] denotes the greatest integer less than or equal to x, then the value of the integral $\int_{ - \pi /2}^{\pi /2} {[[x] - \sin x]dx} $ is equal to :

1
2
3
4

logo

The value of $\displaystyle\int_{0}^{\pi}\!\lvert\cos x\rvert^{3}\,dx$ is:

1
2
3
4

logo

Let the domain of the function $f(x) = \log_2 \log_4 \log_6 (3 + 4x - x^2)$ be $(a, b)$. If $\int_0^{b - a} [x^2] , dx = p - \sqrt{q - \sqrt{r}}, ; p, q, r \in \mathbb{N}, ; \gcd(p, q, r) = 1$, where $[,]$ is the greatest integer function, then $p + q + r$ is equal to

1
2
3
4

logo

If $2\displaystyle\int_{0}^{1} \tan^{-1} x , dx = \displaystyle\int_{0}^{1} \cot^{-1} (1 - x + x^{2}) , dx,$ then $\displaystyle\int_{0}^{1} \tan^{-1} (1 - x + x^{2}) , dx$ is equal to :

1
2
3
4

logo

The function f(x), that satisfies the condition $f(x) = x + \int\limits_0^{\pi /2} {\sin x.\cos y\,f(y)\,dy} $, is :

1
2
3
4

logo

If $\displaystyle \int_{0}^{\pi/8}\frac{\tan\theta}{\sqrt{2k\,\sec\theta}}\;d\theta =1-\frac{1}{\sqrt{2}},\ (k>0)$, then the value of $k$ is:

1
2
3
4

logo

The value of $\displaystyle \int_{0}^{2\pi}\big\lfloor \sin 2x,(1+\cos 3x)\big\rfloor,dx$, where $[\cdot]$ denotes the greatest integer function, is:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...