If [x] denotes the greatest integer less than or equal to x, then the value of the integral $\int_{ - \pi /2}^{\pi /2} {[[x] - \sin x]dx} $ is equal to :
Let the domain of the function $f(x) = \log_2 \log_4 \log_6 (3 + 4x - x^2)$ be $(a, b)$.
If $\int_0^{b - a} [x^2] , dx = p - \sqrt{q - \sqrt{r}}, ; p, q, r \in \mathbb{N}, ; \gcd(p, q, r) = 1$,
where $[,]$ is the greatest integer function, then $p + q + r$ is equal to
If
$2\displaystyle\int_{0}^{1} \tan^{-1} x , dx = \displaystyle\int_{0}^{1} \cot^{-1} (1 - x + x^{2}) , dx,$
then
$\displaystyle\int_{0}^{1} \tan^{-1} (1 - x + x^{2}) , dx$ is equal to :