JEE MAIN Determinants Previous Year Questions (PYQs) – Page 1 of 6

JEE MAIN Determinants Previous Year Questions (PYQs) – Page 1 of 6

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

The number of values of $\theta \in (0, \pi)$ for which the system of linear equations  
$x + 3y + 7z = 0$  
$-x + 4y + 7z = 0$  
$(\sin 3\theta)x + (\cos 2\theta)y + 2z = 0$  
has a non-trivial solution, is -

1
2
3
4

logo

Let $f(x)=\begin{vmatrix} 1+\sin^{2}x & \cos^{2}x & \sin 2x\\ \sin^{2}x & 1+\cos^{2}x & \sin 2x\\ \sin^{2}x & \cos^{2}x & 1+\sin 2x \end{vmatrix},\ x\in\left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right].$ If $\alpha$ and $\beta$ respectively are the maximum and the minimum values of $f$, then

1
2
3
4

logo

If $A,B$ and $\big(\operatorname{adj}(A^{-1})+\operatorname{adj}(B^{-1})\big)$ are non-singular matrices of the same order, then the inverse of $A\Big(\operatorname{adj}(A^{-1})+\operatorname{adj}(B^{-1})\Big)^{-1}B$ is equal to:

1
2
3
4

logo

Let $A = \begin{bmatrix} 2 & b & 1 \\ b & b^2 + 1 & b \\ 1 & b & 2 \end{bmatrix}$ where $b > 0$. Then the minimum value of $\dfrac{\det(A)}{b}$ is –

1
2
3
4

logo

If $g$ is the inverse of a function $f$ and $f'(x)=\dfrac{1}{1+x^{5}}$, then $g'(x)$ is equal to:

1
2
3
4

logo

Let $a_1,a_2,\dots,a_{10}$ be in G.P. with $a_i>0$ for $i=1,2,\dots,10$ and $S$ be the set of pairs $(r,k)$, $r,k\in\mathbb{N}$, for which $ \begin{vmatrix} \log_e(a_1^{\,r}a_2^{\,k}) & \log_e(a_2^{\,r}a_3^{\,k}) & \log_e(a_3^{\,r}a_4^{\,k})\\ \log_e(a_4^{\,r}a_5^{\,k}) & \log_e(a_5^{\,r}a_6^{\,k}) & \log_e(a_6^{\,r}a_7^{\,k})\\ \log_e(a_7^{\,r}a_8^{\,k}) & \log_e(a_8^{\,r}a_9^{\,k}) & \log_e(a_9^{\,r}a_{10}^{\,k}) \end{vmatrix} =0. $ Then the number of elements in $S$, is –

1
2
3
4

logo

Let $S$ be the set of all real values of $k$ for which the system of linear equations
$x + y + z = 2$
$2x + y - z = 3$
$3x + 2y + kz = 4$
has a unique solution. Then $S$ is :

1
2
3
4

logo

Let $A$ and $B$ be two square matrices of order $3$ such that $|A|=3$ and $|B|=2$. Then $\left|,A^{T}A,( \operatorname{adj}(2A))^{-1},(\operatorname{adj}(4B)),(\operatorname{adj}(AB))^{-1},A A^{T}\right|$ is equal to:

1
2
3
4

logo

Let $A$ be a $3 \times 3$ matrix such that $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|=81$.

If $S=\left\{n \in \mathbb{Z}:(|\operatorname{adj}(\operatorname{adj} A)|)^{\frac{(n-1)^2}{2}}=|A|^{\left(3 n^2-5 n-4\right)}\right\}$, then $\sum_\limits{n \in S}\left|A^{\left(n^2+n\right)}\right|$ is equal to :

1
2
3
4

logo

If the system $11x+y+\lambda z=-5,\quad 2x+3y+5z=3,\quad 8x-19y-39z=\mu$ has infinitely many solutions, then $\lambda^{4}-\mu$ equals:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...