Let $f(x)=\begin{vmatrix}
1+\sin^{2}x & \cos^{2}x & \sin 2x\\
\sin^{2}x & 1+\cos^{2}x & \sin 2x\\
\sin^{2}x & \cos^{2}x & 1+\sin 2x
\end{vmatrix},\ x\in\left[\dfrac{\pi}{6},\dfrac{\pi}{3}\right].$ If $\alpha$ and $\beta$ respectively are the maximum and the minimum values of $f$, then
If $A,B$ and $\big(\operatorname{adj}(A^{-1})+\operatorname{adj}(B^{-1})\big)$ are non-singular matrices of the same order, then the inverse of
$A\Big(\operatorname{adj}(A^{-1})+\operatorname{adj}(B^{-1})\Big)^{-1}B$
is equal to:
Let $a_1,a_2,\dots,a_{10}$ be in G.P. with $a_i>0$ for $i=1,2,\dots,10$ and $S$ be the set of pairs $(r,k)$, $r,k\in\mathbb{N}$, for which
$
\begin{vmatrix}
\log_e(a_1^{\,r}a_2^{\,k}) & \log_e(a_2^{\,r}a_3^{\,k}) & \log_e(a_3^{\,r}a_4^{\,k})\\
\log_e(a_4^{\,r}a_5^{\,k}) & \log_e(a_5^{\,r}a_6^{\,k}) & \log_e(a_6^{\,r}a_7^{\,k})\\
\log_e(a_7^{\,r}a_8^{\,k}) & \log_e(a_8^{\,r}a_9^{\,k}) & \log_e(a_9^{\,r}a_{10}^{\,k})
\end{vmatrix}
=0.
$
Then the number of elements in $S$, is –
Let $A$ and $B$ be two square matrices of order $3$ such that $|A|=3$ and $|B|=2$. Then
$\left|,A^{T}A,( \operatorname{adj}(2A))^{-1},(\operatorname{adj}(4B)),(\operatorname{adj}(AB))^{-1},A A^{T}\right|$ is equal to:
Let $A$ be a $3 \times 3$ matrix such that $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|=81$.
If $S=\left\{n \in \mathbb{Z}:(|\operatorname{adj}(\operatorname{adj} A)|)^{\frac{(n-1)^2}{2}}=|A|^{\left(3 n^2-5 n-4\right)}\right\}$, then $\sum_\limits{n \in S}\left|A^{\left(n^2+n\right)}\right|$ is equal to :