Considering the principal values of the inverse trigonometric functions, $\sin ^{-1}\left(\frac{\sqrt{3}}{2} x+\frac{1}{2} \sqrt{1-x^2}\right),-\frac{1}{2}< x<\frac{1}{\sqrt{2}}$, is equal to
$ \text{If } 0 < x < \tfrac{1}{\sqrt{2}} \text{ and } \tfrac{\sin^{-1}x}{\alpha} = \tfrac{\cos^{-1}x}{\beta}, \text{ then the value of } \sin!\left(\tfrac{2\pi\alpha}{\alpha+\beta}\right) \text{ is :}$
The sum of the infinite series $\cot^{-1}\left(\dfrac{7}{4}\right)+\cot^{-1}\left(\dfrac{19}{4}\right)+\cot^{-1}\left(\dfrac{30}{4}\right)+\cot^{-1}\left(\dfrac{67}{4}\right)+\cdots$ is:
The domain of the function $f(x)=\sin^{-1}!\big([,2x^{2}-3,]\big)+\log_{2}!\left(\log_{1/2}(x^{2}-5x+5)\right)$, where $[,\cdot,]$ is the greatest integer function, is:
Considering only the principal values of the inverse trigonometric functions, the domain of the function
$f(x)=\cos^{-1}!\left(\dfrac{x^{2}-4x+2}{x^{2}+3}\right)$ is: