JEE MAIN Inverse Trigonometrical Function Previous Year Questions (PYQs) – Page 1 of 7

JEE MAIN Inverse Trigonometrical Function Previous Year Questions (PYQs) – Page 1 of 7

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

$\tan\!\left(2\tan^{-1}\!\tfrac{1}{5}+\sec^{-1}\!\tfrac{\sqrt{5}}{2}+2\tan^{-1}\!\tfrac{1}{8}\right)$ is equal to:

1
2
3
4

logo

Considering the principal values of the inverse trigonometric functions, $\sin ^{-1}\left(\frac{\sqrt{3}}{2} x+\frac{1}{2} \sqrt{1-x^2}\right),-\frac{1}{2}< x<\frac{1}{\sqrt{2}}$, is equal to

1
2
3
4

logo

$ \text{If } 0 < x < \tfrac{1}{\sqrt{2}} \text{ and } \tfrac{\sin^{-1}x}{\alpha} = \tfrac{\cos^{-1}x}{\beta}, \text{ then the value of } \sin!\left(\tfrac{2\pi\alpha}{\alpha+\beta}\right) \text{ is :}$

1
2
3
4

logo

The value of $\cot\!\left(\displaystyle\sum_{n=1}^{19}\cot^{-1}\!\left(1+\sum_{p=1}^{n}2p\right)\right)$ is :

1
2
3
4

logo

The sum of the infinite series $\cot^{-1}\left(\dfrac{7}{4}\right)+\cot^{-1}\left(\dfrac{19}{4}\right)+\cot^{-1}\left(\dfrac{30}{4}\right)+\cot^{-1}\left(\dfrac{67}{4}\right)+\cdots$ is:

1
2
3
4

logo

Let $S = \left\{ {x \in R:0 < x < 1\,\mathrm{and}\,2{{\tan }^{ - 1}}\left( {{{1 - x} \over {1 + x}}} \right) = {{\cos }^{ - 1}}\left( {{{1 - {x^2}} \over {1 + {x^2}}}} \right)} \right\}$.

If $\mathrm{n(S)}$ denotes the number of elements in $\mathrm{S}$ then :


1
2
3
4

logo

The domain of the function $f(x)=\sin^{-1}!\big([,2x^{2}-3,]\big)+\log_{2}!\left(\log_{1/2}(x^{2}-5x+5)\right)$, where $[,\cdot,]$ is the greatest integer function, is:

1
2
3
4

logo

A possible value of $\tan \left( {{1 \over 4}{{\sin }^{ - 1}}{{\sqrt {63} } \over 8}} \right)$ is :

1
2
3
4

logo

The set of all values of k for which ${({\tan ^{ - 1}}x)^3} + {({\cot ^{ - 1}}x)^3} = k{\pi ^3},\,x \in R$, is the interval :

1
2
3
4

logo

Considering only the principal values of the inverse trigonometric functions, the domain of the function $f(x)=\cos^{-1}!\left(\dfrac{x^{2}-4x+2}{x^{2}+3}\right)$ is:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...