JEE MAIN Matrices Previous Year Questions (PYQs) – Page 12 of 15

JEE MAIN Matrices Previous Year Questions (PYQs) – Page 12 of 15

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let $A = [{a_{ij}}]$ be a square matrix of order 3 such that ${a_{ij}} = {2^{j - i}}$, for all i, j = 1, 2, 3. Then, the matrix A2 + A3 + ...... + A10 is equal to :

1
2
3
4

logo

Let $B=\left[\begin{array}{ll}1 & 3 \\ 1 & 5\end{array}\right]$ and $A$ be a $2 \times 2$ matrix such that $A B^{-1}=A^{-1}$. If $B C B^{-1}=A$ and $C^4+\alpha C^2+\beta I=O$, then $2 \beta-\alpha$ is equal to

1
2
3
4

logo

If $f(x)=[x]-\left[\dfrac{x}{4}\right],\ x\in\mathbb{R}$, where $[\cdot]$ denotes the greatest integer function, then

1
2
3
4

logo

The system of linear equations
$x + y + z = 2$
$2x + 3y + 2z = 5$
$2x + 3y + (a^2 - 1)z = a + 1$
then:

1
2
3
4

logo

Let $A = \left[ {\matrix{ 2 & 3 \cr a & 0 \cr } } \right]$, a$\in$R be written as P + Q where P is a symmetric matrix and Q is skew symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to :

1
2
3
4

logo

Let $A = [{a_{ij}}]$ be a 3 $\times$ 3 matrix, where ${a_{ij}} = \left\{ {\matrix{ 1 & , & {if\,i = j} \cr { - x} & , & {if\,\left| {i - j} \right| = 1} \cr {2x + 1} & , & {otherwise.} \cr } } \right.$ Let a function f : R $\to$ R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to:

1
2
3
4

logo

If $P = \begin{bmatrix} \dfrac{\sqrt{3}}{2} & \dfrac{1}{2} \\ -\dfrac{1}{2} & \dfrac{\sqrt{3}}{2} \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $Q = P A P^{T}$, then $P^{T} Q^{2015} P$ is:

1
2
3
4

logo

If $A = \left[ {\matrix{ {\cos \theta } & {i\sin \theta } \cr {i\sin \theta } & {\cos \theta } \cr } } \right]$, $\left( {\theta = {\pi \over {24}}} \right)$

and ${A^5} = \left[ {\matrix{ a & b \cr c & d \cr } } \right]$, where $i = \sqrt { - 1} $ then which one of the following isnot true?

1
2
3
4

logo

For $x \in \mathbb{R} - \{0,1\}$, let $f_1(x)=\dfrac{1}{x}$, $f_2(x)=1-x$, and $f_3(x)=\dfrac{1}{1-x}$ be three given functions. If a function $J(x)$ satisfies $(f_2 \circ J \circ f_1)(x)=f_3(x)$, then $J(x)$ is equal to:

1
2
3
4

logo

Let the system of linear equations \[ \begin{cases} x + y + kz = 2,\\ 2x + 3y - z = 1,\\ 3x + 4y + 2z = k \end{cases} \] have infinitely many solutions. Then the system \[ \begin{cases} (k+1)x + (2k-1)y = 7,\\ (2k+1)x + (k+5)y = 10 \end{cases} \] has:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...