JEE MAIN Matrices Previous Year Questions (PYQs) – Page 3 of 15

JEE MAIN Matrices Previous Year Questions (PYQs) – Page 3 of 15

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let $A = [a_{ij}]_{2\times 2}$, where $a_{ij}\ne 0$ for all $i,j$ and $A^{2}=I$. Let $a$ be the sum of all diagonal elements of $A$ and $b=\lvert A\rvert$ (i.e., $b=\det A$). Then $3a^{2}+4b^{2}$ is equal to:

1
2
3
4

logo

If the system of linear equations  
$2x+2y+3z=a$  
$3x-y+5z=b$  
$x-3y+2z=c$  
where $a,b,c$ are non-zero real numbers, has more than one solution, then :

1
2
3
4

logo

The number of values of $k$, for which the system of equations : $\matrix{ {\left( {k + 1} \right)x + 8y = 4k} \cr {kx + \left( {k + 3} \right)y = 3k - 1} \cr } $

1
2
3
4

logo

Let $P$ be a square matrix such that $P^{2}=I-P$. For $\alpha,\beta,\gamma,\delta\in\mathbb{N}$, if $P^{\alpha}+P^{\beta}=\gamma I-29P$ and $P^{\alpha}-P^{\beta}=\delta I-13P$, then $\alpha+\beta+\gamma-\delta$ is equal to:

1
2
3
4

logo

If the system of linear equations
$x + ay + z = 3$
$x + 2y + 2z = 6$
$x + 5y + 3z = b$
has no solution, then :

1
2
3
4

logo

Consider the matrix $f(x)=\begin{bmatrix} \cos x & -\sin x & 0\\ \sin x & \cos x & 0\\ 0 & 0 & 1 \end{bmatrix}$. Given below are two statements: Statement I : $f(-x)$ is the inverse of the matrix $f(x)$. Statement II : $f(x)f(y)=f(x+y)$. In the light of the above statements, choose the correct answer:

1
2
3
4

logo

If $A = \left( {\matrix{ {{1 \over {\sqrt 5 }}} & {{2 \over {\sqrt 5 }}} \cr {{{ - 2} \over {\sqrt 5 }}} & {{1 \over {\sqrt 5 }}} \cr } } \right)$, $B = \left( {\matrix{ 1 & 0 \cr i & 1 \cr } } \right)$, $i = \sqrt { - 1} $, and Q = ATBA, then the inverse of the matrix A Q2021 AT is equal to :

1
2
3
4

logo

For the system of equations \[ \begin{cases} x+y+z=6,\\ x+2y+\alpha z=10,\\ x+3y+5z=\beta, \end{cases} \] which one of the following is **NOT** true?

1
2
3
4

logo

Suppose $A$ is any $3\times 3$ non-singular matrix and $(A-3I)(A-5I)=0$ where $I=I_{3}$ and $O=O_{3}$. If $\alpha A+\beta A^{-1}=4I$, then $\alpha+\beta$ is equal to :

1
2
3
4

logo

Let $A = \left( {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 1 \cr 1 & 0 & 0 \cr } } \right)$. Then A2025 $-$ A2020 is equal to :

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...