Qus : 1
1
Let $f(x) = 3{\sin ^4}x + 10{\sin ^3}x + 6{\sin ^2}x - 3$, $x \in \left[ { - {\pi \over 6},{\pi \over 2}} \right]$. Then, f is :
1
increasing in $\left( { - {\pi \over 6},{\pi \over 2}} \right)$
2
decreasing in $\left( {0,{\pi \over 2}} \right)$
3
increasing in $\left( { - {\pi \over 6},0} \right)$
4
decreasing in $\left( { - {\pi \over 6},0} \right)$
✓ Solution
Qus : 2
2
( sin − 1 x ) 2 − ( cos − 1 x ) 2 = a , 0 < x < 1 , a; = 0
then the value of
2 x 2 − 1 2x^2 - 1 2 x 2 − 1
is:
1
$\cos\left(\tfrac{4a}{\pi}\right)$
2
$\sin\left(\tfrac{2a}{\pi}\right)$
3
$\cos\left(\tfrac{2a}{\pi}\right)$
4
$\sin\left(\tfrac{4a}{\pi}\right)$
✓ Solution
Qus : 3
3
If $\sum\limits_{r=1}^{13}\left\{\frac{1}{\sin \left(\frac{\pi}{4}+(r-1) \frac{\pi}{6}\right) \sin \left(\frac{\pi}{4}+\frac{r \pi}{6}\right)}\right\}=a \sqrt{3}+b, a, b \in Z$, then $a^2+b^2$ is equal to :
✓ Solution
Qus : 4
2
For any $\theta \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$, the expression
$3(\cos \theta - \sin \theta)^4 + 6(\sin \theta + \cos \theta)^2 + 4\sin^6 \theta$
equals:
1
$13 - 4\cos^2 \theta + 6\sin^2 \theta \cos^2 \theta$
3
$13 - 4\cos^2 \theta + 6\cos^2 \theta$
4
$13 - 4\cos^4 \theta + 2\sin^2 \theta \cos^2 \theta$
✓ Solution
Qus : 5
1
The sum of all values of $\theta \in [0,2\pi]$ satisfying $2\sin^2\theta=\cos 2\theta$ and $2\cos^2\theta=3\sin\theta$ is:
✓ Solution
Qus : 6
4
Let $f(x) = 3{\sin ^4}x + 10{\sin ^3}x + 6{\sin ^2}x - 3$, $x \in \left[ { - {\pi \over 6},{\pi \over 2}} \right]$. Then, f is :
1
increasing in $\left( { - {\pi \over 6},{\pi \over 2}} \right)$
2
decreasing in $\left( {0,{\pi \over 2}} \right)$
3
increasing in $\left( { - {\pi \over 6},0} \right)$
4
decreasing in $\left( { - {\pi \over 6},0} \right)$
✓ Solution