From $10!$ onward, every factorial ends with at least two zeros.
So, only the sum of first nine factorials affects the tens digit.
$1! + 2! + 3! + 4! + 5! + 6! + 7! + 8! + 9! = 1 + 2 + 6 + 24 + 120 + 720 + 5040 + 40320 + 362880 = 409113.$
Tens digit = $\boxed{1}.$
4
If $\omega$ is a cube root of unity, then
$\left|\begin{array}{ccc}
1 & \omega & \omega^2 \\
1 & \omega^2 & 1 \\
\omega & 1 & \omega^2
\end{array}\right|$
is equal to
Solution:
Work modulo $64$.
$49\equiv -15\pmod{64}$ and
$49^{1}\equiv49,\ 49^{2}\equiv33,\ 49^{3}\equiv17,\ 49^{4}\equiv1$;
hence $49^{n}$ is periodic with period $4$.
Also $16n\equiv 0,16,32,48\ (\bmod\ 64)$ for $n\equiv 0,1,2,3$.
For each residue class:
$n\equiv0$: $1+0+\lambda\equiv0\Rightarrow \lambda\equiv -1$
$n\equiv1$: $49+16+\lambda\equiv1+\lambda\equiv0$
$n\equiv2$: $33+32+\lambda\equiv1+\lambda\equiv0$
$n\equiv3$: $17+48+\lambda\equiv1+\lambda\equiv0$
All give $\lambda\equiv -1\pmod{64}$.
The least negative representative is $\boxed{-1}$.
1
Let $z=\sqrt{3}+i$ be a complex number and $\bar z$ its conjugate. The $|\arg z|+|\arg \bar z|$ is equal to
$\arg z = \tan^{-1}\!\left(\frac{1}{\sqrt3}\right)=\frac{\pi}{6}$ (I quadrant),
$\arg\bar z = -\frac{\pi}{6}$. Sum of absolute values $=\frac{\pi}{6}+\frac{\pi}{6}=\frac{\pi}{3}$.
1
The $\dfrac{(\sqrt3+i)^{17}}{(1-i)^{50}}$ is equal to …