JEE MAIN Continuity Previous Year Questions (PYQs) – Page 2 of 4

JEE MAIN Continuity Previous Year Questions (PYQs) – Page 2 of 4

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let the function $ f(x) = \begin{cases} \dfrac{\log_e(1+5x) - \log_e(1+\alpha x)}{x}, & x \neq 0 \\ 10, & x = 0 \end{cases} $ be continuous at $x=0$. Then $\alpha$ is equal to:

1
2
3
4

logo

If the function $f$ defined as $f(x)=\dfrac{1}{x}-\dfrac{kx-1}{e^{2x}-1},\ x\ne0$, is continuous at $x=0$, then the ordered pair $(k,f(0))$ is equal to :

1
2
3
4

logo

Let f : R $ \to $ R be defined as $f(x) = \left\{ \matrix{ 2\sin \left( { - {{\pi x} \over 2}} \right),if\,x < - 1 \hfill \cr |a{x^2} + x + b|,\,if - 1 \le x \le 1 \hfill \cr \sin (\pi x),\,if\,x > 1 \hfill \cr} \right.$ If f(x) is continuous on R, then a + b equals :

1
2
3
4

logo

If a function $f(x)$ defined by  $f(x) = \begin{cases} ae^x + be^{-x}, & -1 \leq x < 1 \\[6pt] cx^2, & 1 \leq x \leq 3 \\[6pt] ax^2 + 2cx, & 3 < x \leq 4 \end{cases} \\[10pt] $ be continuous for some $ a, b, c \in \mathbb{R} $ and $f'(0) + f'(2) = e,$  then the value of $a$ is

1
2
3
4

logo

Let $\alpha$ $\in$ R be such that the function $f(x) = \left\{ {\matrix{ {{{{{\cos }^{ - 1}}(1 - {{\{ x\} }^2}){{\sin }^{ - 1}}(1 - \{ x\} )} \over {\{ x\} - {{\{ x\} }^3}}},} & {x \ne 0} \cr {\alpha ,} & {x = 0} \cr } } \right.$ is continuous at x = 0, where {x} = x $-$ [ x ] is the greatest integer less than or equal to x. Then :

1
2
3
4

logo

$\mathrm{a}, \mathrm{b}>0$, let $f(x)= \begin{cases}\frac{\tan ((\mathrm{a}+1) x)+\mathrm{b} \tan x}{x}, & x< 0 \\ 3, & x=0 \\ \frac{\sqrt{\mathrm{a} x+\mathrm{b}^2 x^2}-\sqrt{\mathrm{a} x}}{\mathrm{~b} \sqrt{\mathrm{a}} x \sqrt{x}}, & x> 0\end{cases}$ be a continuous function at $x=0$. Then $\frac{\mathrm{b}}{\mathrm{a}}$ is equal to :

1
2
3
4

logo

If the function $f(x) = \left\{ {\matrix{ {(1 + |\cos x|)^{\lambda \over {|\cos x|}}} & , & {0 < x < {\pi \over 2}} \cr \mu & , & {x = {\pi \over 2}} \cr e^{{{\cot 6x} \over {{}\cot 4x}}} & , & {{\pi \over 2} < x < \pi } \cr } } \right.$

is continuous at $x = {\pi \over 2}$, then $9\lambda + 6{\log _e}\mu + {\mu ^6} - {e^{6\lambda }}$ is equal to


1
2
3
4

logo

If the function $f$ defined on $\left(\dfrac{\pi}{6}, \dfrac{\pi}{3}\right)$ by $f(x) = \begin{cases} \dfrac{\sqrt{2}\cos x - 1}{\cot x - 1}, & x \ne \dfrac{\pi}{4} \ k, & x = \dfrac{\pi}{4} \end{cases}$ is continuous, then $k$ is equal to

1
2
3
4

logo

Let f, g : R $\to$ R be functions defined by

$f(x) = \left\{ {\matrix{ {[x]} & , & {x < 0} \cr {|1 - x|} & , & {x \ge 0} \cr } } \right.$ and $g(x) = \left\{ {\matrix{ {{e^x} - x} & , & {x < 0} \cr {{{(x - 1)}^2} - 1} & , & {x \ge 0} \cr } } \right.$ where [x] denote the greatest integer less than or equal to x. Then, the function fog is discontinuous at exactly :


1
2
3
4

logo

A ray of light coming from the point $P(1,2)$ gets reflected from the point $Q$ on the $x$-axis and then passes through the point $R(4,3)$. If the point $S(h,k)$ is such that $PQRS$ is a parallelogram, then $hk^{2}$ is equal to:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...