ASPIRE STUDY NIMCET & CUET NOTES

Set Theory, Relation Notes

ASPIRE STUDY NIMCET & CUET NOTES 1010 words

Set Theory Notes For NIMCET & CUET PG MCA 2026 – Definitions, Formulas, Laws & Examples

Learn Complete Set Theory For NIMCET & CUET PG MCA 2026 With Detailed Definitions, Venn Diagrams, Laws, And Formulas. Get Easy Examples, Solved Problems, And Quick Revision Notes For MCA Entrance Exams.


Set Theory – Detailed Notes

1. Basics & Notation

A set is a well-defined collection of objects called elements. We write $x\in A$ if $x$ belongs to set $A$, and $x\notin A$ otherwise.

  • Roster (list) form: $A=\{1,2,3\}$
  • Set-builder form: $A=\{x\mid \text{property of }x\}$, e.g. $A=\{x\in\mathbb{Z}\mid 1\le x\le 3\}$
  • Common sets: $\mathbb{N}=\{1,2,3,\dots\}$, $\mathbb{Z}$ (integers), $\mathbb{Q}$ (rationals), $\mathbb{R}$ (reals), $\mathbb{C}$ (complex)
  • Empty set: $\varnothing$ (no elements)
  • Universal set: $U$ (context dependent, the “universe” under discussion)

2. Types of Sets

  • Finite: has finitely many elements, e.g. $\{2,4,6,8\}$
  • Infinite: not finite, e.g. $\mathbb{N}$
  • Singleton: exactly one element, e.g. $\{0\}$
  • Equal sets: $A=B$ iff every element of $A$ is in $B$ and vice versa
  • Subset: $A\subseteq B$ iff $(\forall x)(x\in A\Rightarrow x\in B)$
  • Proper subset: $A\subset B$ iff $A\subseteq B$ and $A\ne B$

3. Power Set & Cardinality

  • Power set: $\mathcal{P}(A)=\{\text{all subsets of }A\}$
  • If $|A|=n$ (finite), then $|\mathcal{P}(A)|=2^n$
  • Example: If $A=\{a,b\}$, then $\mathcal{P}(A)=\{\varnothing,\{a\},\{b\},\{a,b\}\}$

4. Operations on Sets

  • Union: $A\cup B=\{x\mid x\in A\text{ or }x\in B\}$
  • Intersection: $A\cap B=\{x\mid x\in A\text{ and }x\in B\}$
  • Difference: $A\setminus B=\{x\mid x\in A\text{ and }x\notin B\}$
  • Complement (w.r.t. $U$): $A^{c}=U\setminus A$
  • Symmetric difference: $A\triangle B=(A\setminus B)\cup(B\setminus A)$

5. Algebra of Sets (Identities)

LawIdentity (using $U$ and $\varnothing$)
Commutative$A\cup B=B\cup A,\quad A\cap B=B\cap A$
Associative$(A\cup B)\cup C=A\cup(B\cup C)$, $(A\cap B)\cap C=A\cap(B\cap C)$
Distributive$A\cap(B\cup C)=(A\cap B)\cup(A\cap C)$
$A\cup(B\cap C)=(A\cup B)\cup(A\cup C)$
Idempotent$A\cup A=A,\quad A\cap A=A$
Identity$A\cup\varnothing=A,\quad A\cap U=A$
Domination$A\cup U=U,\quad A\cap \varnothing=\varnothing$
Complement$A\cup A^{c}=U,\quad A\cap A^{c}=\varnothing$
Double complement$(A^{c})^{c}=A$
De Morgan$(A\cup B)^{c}=A^{c}\cap B^{c}$,
$(A\cap B)^{c}=A^{c}\cup B^{c}$
Absorption$A\cup(A\cap B)=A,\quad A\cap(A\cup B)=A$

6. Venn Counting & Inclusion–Exclusion

  • Two sets: $|A\cup B|=|A|+|B|-|A\cap B|$
  • Three sets: $$ |A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|B\cap C|-|C\cap A|+|A\cap B\cap C| $$
  • Disjoint sets: $A\cap B=\varnothing\Rightarrow |A\cup B|=|A|+|B|$

7. Cartesian Product & Tuples

  • $A\times B=\{(a,b)\mid a\in A,\ b\in B\}$
  • If $|A|=m$ and $|B|=n$ (finite), then $|A\times B|=mn$
  • Generally $A^k=\underbrace{A\times A\times\cdots\times A}_{k\text{ times}}$ (ordered $k$-tuples)

8. Relations (Brief)

  • A relation $R$ on $A$ is a subset of $A\times A$
  • Reflexive: $(\forall a\in A)\ (a,a)\in R$
  • Symmetric: $(a,b)\in R\Rightarrow (b,a)\in R$
  • Antisymmetric: $(a,b)\in R\ \&\ (b,a)\in R\Rightarrow a=b$
  • Transitive: $(a,b)\in R\ \&\ (b,c)\in R\Rightarrow(a,c)\in R$
  • Equivalence relation: reflexive, symmetric, transitive → partitions $A$ into equivalence classes
  • Partial order: reflexive, antisymmetric, transitive (poset)

9. Functions (Brief)

  • A function $f:A\to B$ is a relation with exactly one image for each $a\in A$
  • Injective (one–one): $f(a_1)=f(a_2)\Rightarrow a_1=a_2$
  • Surjective (onto): $\operatorname{Im}(f)=B$
  • Bijective: injective and surjective → inverse $f^{-1}:B\to A$ exists
  • Composition: $(g\circ f)(x)=g(f(x))$ where domains/codomains match

10. Partitions & Indexed Families

  • A partition of $A$ is a collection of nonempty, pairwise-disjoint subsets whose union is $A$
  • Indexed family: $\{A_i\}_{i\in I}$ with index set $I$; operations extend as $$ \bigcup_{i\in I}A_i=\{x\mid (\exists i\in I)\ x\in A_i\},\quad \bigcap_{i\in I}A_i=\{x\mid (\forall i\in I)\ x\in A_i\} $$

11. Countability (Overview)

  • Finite: $|A|=n$ for some $n\in\mathbb{N}$
  • Countably infinite: there is a bijection with $\mathbb{N}$ (e.g. $\mathbb{Z},\ \mathbb{Q}$)
  • Uncountable: strictly larger than countable (e.g. $\mathbb{R}$)

12. Typical Exam Identities & Tricks

  • $A\setminus(B\cup C)=(A\setminus B)\cap(A\setminus C)$
  • $A\setminus(B\cap C)=(A\setminus B)\cup(A\setminus C)$
  • $A\triangle B=(A\cup B)\setminus(A\cap B)$, and $(A\triangle B)\triangle C=A\triangle(B\triangle C)$
  • $A\subseteq B\iff A\cup B=B\iff A\cap B=A$

13. Worked Mini-Examples

  1. Cardinality of a power set: If $|A|=5$, then $|\mathcal{P}(A)|=2^5=32$.
  2. Counting with inclusion–exclusion (2 sets): If $|A|=40$, $|B|=35$, $|A\cap B|=10$, then $|A\cup B|=40+35-10=65$.
  3. Subset test by intersections: $A\subseteq B\iff A\cap B=A$.
  4. Disjointness: $A$ and $B$ disjoint $\iff A\cap B=\varnothing$.
  5. Cartesian product size: If $|A|=3$, $|B|=4$, then $|A\times B|=12$.

14. Common Pitfalls

  • $\{a\}$ vs $a$: the former is a set containing $a$; the latter is the element itself
  • $\varnothing\ne\{\varnothing\}$: the first has no elements, the second has one element (the empty set)
  • Order matters in tuples: $(a,b)\ne(b,a)$ in general
  • In complements, always specify/remember the universe $U$

15. Quick Practice (Self-check)

  1. Write $\{x\in\mathbb{Z}\mid -2\le x\le 2\}$ in roster form.
  2. List $\mathcal{P}(\{1,2,3\})$ and verify it has $2^3$ elements.
  3. Prove $A\setminus(B\cup C)=(A\setminus B)\cap(A\setminus C)$ using element method.
  4. If $|A|=m$, $|B|=n$ (finite), find $|A\times B\times A|$.
  5. Give an example of a relation that is reflexive and transitive but not symmetric.

Tip for exams (NIMCET/CUET-PG/MAH-MCA-CET): Master the identity table and inclusion–exclusion. For proofs, prefer the element-chasing style: “Let $x$ be arbitrary… show both directions $\Rightarrow$ and $\Leftarrow$.”

Disclaimer: This information is for immediate guidance. While due care is taken to prepare this notification, errors may occur. Please verify details on the official website before applying. Dates and information may change.