ASPIRE STUDY NOTES

Function – Notes for JEE, NIMCET, CUET, NDA | Concepts, Formulas and Examples

ASPIRE STUDY NOTES 572 words

Function – Notes For JEE, NIMCET, CUET, NDA | Concepts, Formulas, Properties & Examples

Complete Function Notes For JEE, NIMCET, CUET And NDA With Definitions, Types, Domain, Range, Formulas, Graphs And Solved Examples. Perfect For Exam Preparation.

Function – Notes for JEE, NIMCET, CUET, NDA | Concepts, Formulas and Examples
Function – Notes for JEE, NIMCET, CUET, NDA | Concepts, Formulas and Examples

Function – Complete Chapter Notes for JEE Main, N NIMCET, CUET

Table of Contents

  1. Definition of Function
  2. Representation of Functions
  3. Types of Functions
  4. Domain, Co-domain & Range
  5. Composition of Functions
  6. Inverse of a Function
  7. Even and Odd Functions
  8. Periodic Functions
  9. Algebra of Functions
  10. Important Standard Functions
  11. Graph Transformations
  12. Important Examples
  13. Summary Points (Exam-Oriented)

1. Definition of Function

A function is a rule that assigns every element of a non-empty set domain to exactly one element of a non-empty set co-domain.

We write the function as $f : A \to B$.

Example: If $f(x) = x^2$ and $A = \{1,2,3\}$, then range $= \{1,4,9\}$.


2. Representation of Functions

  • Arrow Diagram: mapping arrows from domain to co-domain.
  • Rule Method: e.g. $f(x) = 2x + 1$.
  • Graph: set of all points $(x, f(x))$.

Vertical Line Test: A vertical line should intersect graph at most once.


3. Types of Functions

3.1 One-One (Injective)

$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

3.2 Many-One

Multiple inputs give same output.

3.3 Onto (Surjective)

Range = Co-domain.

3.4 Bijective

One-one and onto → Inverse exists.

3.5 Constant Function

$f(x) = c$

3.6 Identity Function

$I(x) = x$

3.7 Modulus Function

$f(x) = |x|$

3.8 Greatest Integer Function

$f(x) = \lfloor x \rfloor$

3.9 Fractional Part Function

$\{x\} = x - \lfloor x \rfloor$

3.10 Signum Function

$\text{sgn}(x) = 1, 0, -1$ based on sign of $x$


4. Domain, Co-domain & Range

4.1 Domain

  • Denominator $\ne 0$
  • Square root → expression $\ge 0$
  • Log → argument $> 0$
  • Inverse trigonometric → restricted inputs

Example (Domain):

For $f(x)=\frac{1}{\sqrt{5-2x}}$, condition is:

$5-2x > 0 \Rightarrow x < \frac{5}{2}$

Domain: $(-\infty, \frac{5}{2})$

4.2 Range

Actual output values of $f(x)$.

Example (Range):

$f(x)=\dfrac{1}{x^2+1}$

$x^2 \ge 0 \Rightarrow x^2+1 \ge 1$

Range → $(0,1]$


5. Composition of Functions

If $f : A\to B$ and $g : B\to C$, then $(g\circ f)(x)=g(f(x))$.

Example: If $f(x)=x+2$ and $g(x)=x^2$, then $(g\circ f)(x)=(x+2)^2$.


6. Inverse of a Function

Inverse exists only for bijective functions.

Steps:

  1. Write $y=f(x)$
  2. Swap $x,y$
  3. Solve for $y$ → this is $f^{-1}(x)$

Example: $f(x)=\frac{2x-1}{3}$

$f^{-1}(x)=\frac{3x+1}{2}$


7. Even and Odd Functions

Even Function:

$f(-x)=f(x)$

Odd Function:

$f(-x)=-f(x)$

Example: $x^2$ even, $x^3$ odd


8. Periodic Functions

A function $f$ is periodic if $f(x+T)=f(x)$.

  • $\sin x$, $\cos x$ → $2\pi$
  • $\tan x$ → $\pi$

Shortcut: For $f(x)=\sin(ax+b)$ → Period $=\frac{2\pi}{|a|}$


9. Algebra of Functions

  • $(f+g)(x)=f(x)+g(x)$
  • $(f-g)(x)=f(x)-g(x)$
  • $(fg)(x)=f(x)g(x)$
  • $(kf)(x)=k\cdot f(x)$
  • $\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$, $g(x)\ne 0$

10. Important Standard Functions

  • Polynomial: $f(x)=ax^n+\cdots$
  • Rational: $f(x)=\frac{P(x)}{Q(x)}$
  • Exponential: $a^x$
  • Logarithmic: $\log_a x$
  • Trigonometric, inverse trigonometric
  • Modulus, step, signum

11. Graph Transformations

  • Vertical shift: $f(x)+k$
  • Horizontal shift: $f(x-a)$
  • Reflection in x-axis: $-f(x)$
  • Reflection in y-axis: $f(-x)$
  • Vertical stretch: $k f(x)$
  • Horizontal stretch: $f(kx)$

12. Important Examples

Example 1: One-One / Many-One

$f(x)=x^2$ is many-one on $\mathbb{R}$ but one-one on $[0,\infty)$.

Example 2: Range

$f(x)=\sqrt{9-x^2}$ → Range $=[0,3]$

Example 3: Composition

For $f(x)=x^2+1$, $g(x)=\sqrt{x-1}$:

$(g\circ f)(x)=|x|$

Example 4: Inverse

$f(x)=\frac{2x-1}{3}$ → $f^{-1}(x)=\frac{3x+1}{2}$


13. Summary Points

  • If $f$ is increasing → it is injective.
  • Only bijective → inverse exists.
  • For log → argument $>0$.
  • For mod function → use piecewise.
  • For range → convert to standard forms.
  • Graphs of G.I.F., modulus, signum → must memorize.

Disclaimer: This information is for immediate guidance. While due care is taken to prepare this notification, errors may occur. Please verify details on the official website before applying. Dates and information may change.